
Intelligent LiDAR Navigation: Leveraging
External Information and Semantic Maps with

LLM as Copilot
Fujing Xie

Key Laboratory of Intelligent
Perception and Human-Machine

Collaboration,
ShanghaiTech University

Shanghai, China
xiefj@shanghaitech.edu.cn

Jiajie Zhang
Key Laboratory of Intelligent

Perception and Human-Machine
Collaboration,

ShanghaiTech University
Shanghai, China

zhangjj2023@shanghaitech.edu.cn

Sören Schwertfeger
Key Laboratory of Intelligent

Perception and Human-Machine
Collaboration,

ShanghaiTech University
Shanghai, China

soerensch@shanghaitech.edu.cn

Abstract—Traditional robot navigation systems primarily uti-
lize occupancy grid maps and laser-based sensing technologies,
as demonstrated by the popular move base package in ROS.
Unlike robots, humans navigate not only through spatial aware-
ness and physical distances but also by integrating external
information, such as elevator maintenance updates from public
notification boards and experiential knowledge, like the need
for special access through certain doors. With the development
of Large Language Models (LLMs), which posses text under-
standing and intelligence close to human performance, there is
now an opportunity to infuse robot navigation systems with a
level of understanding akin to human cognition. In this study,
we propose using osmAG (Area Graph in OpensStreetMap
textual format), a semantic map representation to bridge the
gap between the capabilities of move base and the contextual
understanding offered by LLMs. Our methodology employs
LLMs as actual copilot in robot navigation, enabling the
integration of a broader range of informational inputs while
maintaining the robustness of traditional robotic navigation
systems. Our code, demo, map, experiment results can be ac-
cessed at https://github.com/xiexiexiaoxiexie/Intelligent-LiDAR-
Navigation-LLM-as-Copilot.

Index Terms—robot navigation, semantic map, large language
model.

I. INTRODUCTION

Robots in dynamic environments face challenges when sur-
roundings can’t be instantly updated. As depicted in Fig. 1, a
campus delivery robot might encounter unexpected obstacles,
like a pipe repair closure. Despite prior notice on public
websites, the robot’s navigation algorithm remains unaware of
such obstacles. Most LLM-guided navigation research focuses
on using cameras as sensors, as visual data is easier to
integrate with language models for semantic information. For
instance, [1] achieves basic navigation by asking an LLM to
generate code that calls high-level functions like ’turn left’ to
control robot movement. [2] navigates robots based on natural
language instructions, such as “After passing a white building,
take a right next to a white truck.” [3] builds an occupancy
grid map and generates a language-grounded value map to
guide exploration in unfamiliar environments.

In this work, we focus on the navigation task rather
than mission planning using LLMs. Traditional navigation

This work has been partially funded by the Shanghai Frontiers Science
Center of Human-centered Artificial Intelligence. This work was also sup-
ported by the Science and Technology Commission of Shanghai Municipality
(STCSM), project 22JC1410700 ”Evaluation of real-time localization and
mapping algorithms for intelligent robots”. The experiments of this work
were supported by the core facility Platform of Computer Science and
Communication, SIST, ShanghaiTech University

Fig. 1. The figure above depicts a real-life situation encountered by a 3rd-
party delivery robot on our University campus, where it is blocked by an
intersection closure. Below the e-mail sent by Office of General Services
announcing this closure is shown.

algorithms like move base have been refined over years, but
relying solely on occupancy grid maps and laser scans limits
their effectiveness in large, dynamic environments, where
changes are frequent.

For navigation purposes, the primary concern is whether
the path is navigable, rather than the specifics of what may be
obstructing it. Therefore, we prefer using laser-based sensors
for their direct measurement capabilities and environmental
robustness over camera-based approaches.

Navigating complex indoor environments, like large cam-
pus buildings, is challenging due to frequent changes such as
door operations, furniture shifts, and disruptions like elevator
maintenance. Instead of generating new maps for each task,
robots should use maps of permanent infrastructure while
adapting to real-time conditions, much like humans who rely
on both building structure and external information, such as
campus notifications .

To support these behaviors, we need a map that is compact
and textual, ensuring compatibility with LLMs for token
efficiency and ease of human editing to incorporate pref-
erences, compatible with traditional robotic algorithms, and
focused on permanent structural information to minimize
update frequency. In this work, we utilize the osmAG [4] for
these navigation tasks, a hierarchical, topometric, semantic
textual map that is utilizing areas defined by polygons which
represents physical spaces in the environment, such as rooms
and corridors. The line segments of the area polygons that
connect two neighboring areas for example doors are called
passages. The osmAG can be easily edited by humans to

https://github.com/xiexiexiaoxiexie/Intelligent-LiDAR-Navigation-LLM-as-Copilot
https://github.com/xiexiexiaoxiexie/Intelligent-LiDAR-Navigation-LLM-as-Copilot

Fig. 2. Pipeline of our algorithm: The NavigationEventMonitor keeps tracking events from public notifications and stores information that could impact
navigation. When receiving a human instruction, the PassageCostEvaluator identifies the destination and assess passage costs based on instructions,
accessibility document, and osmAG. This data is used by osmAGPathPlanner to plan a path, which is then sent to the NavigationEventMonitor for approval.
If approved, the path (a list of passages) is sent to move base to move the robot. If not, NavigationEventMonitor suggests areas to avoid, prompting
osmAGPathPlanner to generate an alternative path until approval is granted.

add semantic information, such as labeling an area as the
’Robotics Training Lab,’ making it well-suited for adapting
to human environments. The Area Graph was introduced in
[5], and the LiDAR-based localization method using osmAG
is presented in [6]. Details on the Area Graph and osmAG
are omitted here for brevity.

Our contributions are as follows:
• Our system leverages LLMs to comprehend the robot’s

current capabilities, map data, and combines this with
historical data and external information sources like
public emails, web announcements, or tweets.

• We integrates LLMs into traditional laser-based naviga-
tion systems using osmAG as the map representation,
enabling simple implementation on real-world robots
equipped with LiDAR and an osmAG map.

• We make our code, simulation environments, and ex-
perimental results open-source, allowing others to test
different LLMs or navigation techniques.

II. APPROACH

When robots navigate large buildings, their paths depend on
selecting passages between areas, with traversal costs varying
by entry and exit points as illustrated in Fig. 3. Humans,
however, often refer to areas like ”Sector B” rather than
specific passages, requiring different treatment of passages
and areas when using LLMs for navigation.

We use ChatGPT-4o as our LLM for its advanced capabil-
ities, with the PassageCostEvaluator module (Section II-A)
assessing passage costs pci, and the NavigationEventMonitor
(Section II-B) validating paths using external information.
The areas identified as not accessible based on external
information are denoted as Ainacc. The pipeline of our al-
gorithm is shown in Fig. 2. Given an osmAG map denoted
as AG = (V,E), where V represents vertices (passages) and
E represents edges (distance between passages inside one
area), the navigation task involves determining the destination
area, incorporating extra passage costs, and identifying certain
areas to avoid. The goal is to find the optimal sequence
of passages from the robot position Probot to the goal area,
denoted as P = {v1,v2, . . . ,vk} where v1,v2, . . . ,vk are the
intermediate nodes (passages). For AG = (V,E), we use A* to
pre-calculate the distance from each passage to every other
passage within one area di j and store this information in a
file. This precomputed information is map-specific and does
not change over time, as shown by the green paths in Fig. 3.
How osmAGPathPlanner plan a path is described in Section.

II-C, and the integration with ROS move base is in Section.
II-D.

A. Human Instruction Processing & Passage Cost Evaluation

As shown in Fig. 2, the system starts by receiving a
human instruction, such as ”Please take this document to
the robotics training lab.” Using the osmAG map, the LLM
identifies the destination area and evaluates the cost of each
passage based on the type (automatic or handle doors) and
the robot’s past experiences. Robots that can open doors or
rely on automatic doors have lower costs, while consistently
problematic passages, like frequently closed fireproof doors,
incur higher costs. The module outputs the destination area
and passage costs.

B. Navigation Event Tracking & Path Validation
As shown in Fig. 2, the NavigationEventMonitor tracks

events that could impact navigation, such as elevator mainte-
nance. When such information is received, the LLM assesses
its relevance to the robot’s tasks. If relevant, a JSON string is
generated and stored for later path approval. This module also
validates paths from osmAGPathPlanner, ensuring they avoid
invalid areas based on event data and the robot’s capabilities,
such as recognizing that a wheeled robot can only use
elevators in multi-floor navigation as illustrated in III-E.The
module’s output includes the validation of the shortest path
and identifies areas to avoid if the path is invalid.

C. osmAG Path Planner

Besides the precomputed distance between passages, we
introduce external passage costs pci as mentioned in Section
II-A. Therefore, the total cost of edge (vi,v j) is given by:

ti j = di j + pci + pc j
The passages in Ainacc are denoted as Einacc ⊂ E. By

removing Einacc from E, we obtain E ′ = E \Einacc.
To incorporate the start position and the destination into the

graph, we add vertices and edges accordingly. For the robot’s
starting position Probot, we add edges between Probot and all
passages in the start area (Vstart). Similarly, for the destination,
we include the centroid of the destination area and create
edges connecting it to all passages within the destination area
(Vdestination). Let vs represent the robot’s starting position Probot,
and vd represent the centroid of the destination area. The
updated set of vertices V ′ and edges E ′′ can be expressed
as:

V ′ =V ∪{vs,vd}

E ′′ = E ′∪{(vs,vi) | vi ∈Vstart}∪{(vd ,v j) | v j ∈Vdestination}
The final graph for this navigation task, incorporating the start
position and destination centroid, is defined as AG′=(V ′,E ′′).
The path P is then determined as P = A∗(AG′).

As shown in Fig. 3, the A* method would select the path
in (a) only utilizing precomputed passage lengths. However,
with insights from the PassageCostEvaluator, the left path
is assigned a higher cost, leading to the path in (b). The
NavigationEventMonitor then excludes the yellow area, re-
sulting in the final approved path in (c). Based on the selected
areas, we set the polygons of chosen areas as ’occupied’
and designate the chosen passages as ’free’ (with unselected
passages remaining ’occupied’). This ensures the path planned
by move base follows the desired route, as shown in (d).

(a) (b) (c) (d)

Fig. 3. osmAGPathPlanning process: Blue polygons represent areas, red lines
denote passages, green paths indicate distances between passages within an
area (map-specific and stored in a file), and purple paths show the current
shortest path. (a) Shortest path based on distance alone; (b) Experience-based
adjustment favors the right path due to consistently open passages; (c) Event
monitor advises avoiding the yellow-marked area, likely occupied due to an
event; (d) Final path approved by the NavigationEventMonitor, with each
passage sent as a goal to move base. The occupancy grid map is rendered
as the move base global map, with other passages closed to enforce path
adherence.
D. Integration osmAGPathPlanner with ROS move base

After the osmAGPathPlanner selects the path P and re-
ceives approval from the NavigationEventMonitor, it sends
each passage as a goal to the move base and renders a
occupancy grid map that is restricted to the chosen areas
and the selected passages as the global map in move base.
This ensures the move base global planner strictly follows
the osmAGPathPlanner’s path (see Fig. 3(d)). If the robot
encounters an inaccessible passage, despite using past ex-
periences and notifications, the failure is recorded, and the
osmAGPathPlanner re-plans the path, repeating until the robot
reaches its destination.

E. Documenting Passages Accessibility

As the robot navigates, this module records the success
or failure of each passage traversal, storing the data in a file.
The PassageCostEvaluator module then sends this data to the
LLM to evaluate the cost of each passage (pci). If a passage
is found inaccessible, it is marked as ’infeasible’ and removed
from AG′ during re-planning of this trial.

III. EXPERIMENTS

Overall, our approach consistently outperformed
move base by maintaining accurate and context-aware
path planning, demonstrating the effectiveness of integrating
external information through PassageCostEvaluator and
NavigationEventMonitor. In Section III-A, we outline our
experiment setup. Section III-B details how we assess the
LLM’s ability to track navigation-related information and
validate a proposed shortest path. Section III-C compares our
method with ROS move base, while Section III-D evaluates
the contributions of the two LLM modules to our approach.
Finally, Section III-E demonstrates that our system can
operate across multiple floors and avoid elevators under
maintenance.

A. Experiments Setup

1) Robot and World: In our experiments, we simulate the
”turtlebot3 waffle” model with a 6-meter range laser sensor.
Both our method’s robots and those using the move base
package share identical parameters for a fair comparison. The
environment is simulated in Gazebo, based on an osmAG of a
real campus building with over 6,200 square meters and 70+
rooms per floor. We use ROS ’Navfn’ as the global planner
and ’DWA’ (Dynamic Window Approach) as the local planner
for move base. The robot’s operations are mostly confined to
the first floor for two reasons: move base lacks multi-floor
navigation, and multi-floor access could simplify obstacle
avoidance by allowing vertical rerouting. Limiting the tests
to the first floor better challenges the algorithm to navigate
longer detours outside the building.

2) Cases: To assess the system’s ability, we designed
5 experimental cases (4 on the first floor, 1 spanning 2
floors), each involving a simulated instruction and a real event
notification sent by the campus administration. For example,
an instruction might be, ”Please bring these tools to the
same room on the second floor,” combined with event details.
Several starting areas, or trials, are established for each case,
along with same destination. In each trial, the robot must
recognize restricted areas based on prior notifications and plan
a detour around them. The trials are designed so the shortest
paths typically cross restricted areas, requiring the robot to
adapt intelligently. The experience database begins empty for
each case, and as the system navigates, PassageCostEvaluator
documents each passage’s accessibility, gradually building a
comprehensive understanding of the environment to optimize
performance in subsequent trials.

3) Metric: In some cases, we close the doors of restricted
areas, while in others, we leave them open. Therefore, we
compare the system based on both the path length and whether
the robot enters restricted areas with move base.

B. Event Tracking & Path Approval Experiment

To ensure the effective operation of the
NavigationEventMonitor module, it must first assess
the relevance of each notification to the robot’s navigation
task and then determine if the proposed path is valid or
needs adjustment based on the tracked events. The module
demonstrated high accuracy in determining notification
relevance. Out of 20 notifications (10 navigation relevant,
10 irrelevant), the LLM correctly identified whether each
notification was relevant to robot navigation. Across 37 trials,
95 path approval requests were sent: 57 of 61 valid paths
were approved (with is valid set to ’true’ or the areas to
avoid not in the path), and all 34 invalid paths were correctly
flagged by setting is valid to false. However, in 14 of the
95 requests, the responses were semantically correct but
deviated from the specified output format, such as returning
’B sector’ or a room number instead of the exact area name.

C. Comprehensive System Experiment

We conducted tests across 4 first-floor cases and 37 trials
to evaluate our system, comparing it to the ROS move base
package with and without clearing the obstacle layer between
trials. Note that the results from move base without obstacle
layer clearing closely approximated the actual shortest path
in later trials in one case. But in real life implementation, the
global map needs periodic clearing to prevent sensor noise,

Fig. 4. This figure presents the paths from four experimental cases. For clarity, only the paths from our method and move base with clearing between trials
are displayed on the map. In the map, blue lines represent areas in the osmAG, while red lines indicate passages between them. Each case was tested in a
world with different door configurations (open or closed). Grey shaded zones represent restricted areas caused by events in cases: a graduation party in the
lobby, classroom renovation in the D sector, a fire drill in the lobby and B sector, and a wireless access upgrade in the lobby and B sector. Blue shaded
zones represent destination areas of each case. The inset figures show the path lengths for each trial, comparing our method, our method with ablation
testing, move base with and without obstacle layer clearing. The black box highlights where move base failed, and the data within the yellow circle shows
where the path intruded into restricted areas. In Case 4, only the path with NavigationEventMonitor avoids intruding into restricted areas.

environmental changes, or dynamic objects from being treated
as permanent, which can hinder navigation.

The results in Fig. 4 and Table I clearly demonstrate that
our system significantly outperforms the baseline move base
package in navigating large, complex environments. Across
37 trials, our system consistently avoided restricted areas
and successfully reached the designated destinations, reducing
the total path length by 58% compared to move base with
obstacle layer clearing between trials. Notably, in Fig. 4 (b),
(c) and (d), where the doors to restricted areas are not fully
closed, move base entered restricted areas 25 times and failed
4 times across 74 runs in 37 trials, highlighting the clear
advantage of our approach.

TABLE I
COMPARISON OF PATH LENGTHS (M) ACROSS DIFFERENT NAVIGATION

CONFIGURATIONS FOR VARIOUS CASES

Navigation configuration Case 1 Case 2 Case 3 Case 4

Our method 192.5 126.5 236.3 214.7
Our method w/o

NavigationEventMonitor 221.2 135.4 264.3 223.3
Our method w/o

PassageCostEvaluator 234.6 171.4 270.0 215.9
Move base 347.3 202.2 398.5 267.5

Move base w/o clearing 220.1 158.7 248.1 183.1

D. Ablation Experiment

To assess the impact of individual components in our sys-
tem, we conducted an ablation study on two key modules: the
PassageCostEvaluator and the NavigationEventMonitor. In
the first experiment, we removed the PassageCostEvaluator,
leaving only the NavigationEventMonitor to track events.
This allowed the system to avoid specific areas without
using prior experience, isolating the PassageCostEvaluator’s
impact. The results showed that while the system avoided
restricted areas, it frequently attempted to pass through infea-
sible passages, leading to longer detours. This underscored the
PassageCostEvaluator’s role in optimizing navigation using
historical data. In the second experiment, we excluded the
NavigationEventMonitor, allowing the system to rely solely

on past experience. Without the NavigationEventMonitor, the
system struggled to avoid restricted areas. In cases with closed
doors in restricted areas, the system eventually performed
similarly to the full method after several trials. However, when
doors remained open in restricted areas, the system violated
restrictions, highlighting the NavigationEventMonitor’s crit-
ical role in ensuring compliance with external information
during navigation. The ablation studies, detailed in Fig. 4
and Table I, demonstrate the essential contributions of both
components to the system’s overall performance.

E. Multi-floor Experiment

We tested our system’s ability to plan path across multiple
floors, focusing on avoiding obstacles like a broken elevator
and stairs inaccessible to a wheeled robot. In this test, our
system successfully navigated between floors, avoiding main-
tenance elevators and unreachable stairs while still finding
the shortest path. The video on website demonstrates this
capability, showcasing a clear advantage over move base,
which lacks multi-floor path planning and doesn’t account
for the robot’s limitations.

REFERENCES

[1] S. H. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor, “Chatgpt for
robotics: Design principles and model abilities,” IEEE Access, 2024.

[2] D. Shah, B. Osiński, S. Levine et al., “Lm-nav: Robotic navigation with
large pre-trained models of language, vision, and action,” in Conference
on Robot Learning. PMLR, 2023, pp. 492–504.

[3] N. Yokoyama, S. Ha, D. Batra, J. Wang, and B. Bucher, “Vlfm: Vision-
language frontier maps for zero-shot semantic navigation,” in 2024 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2024, pp. 42–48.

[4] D. Feng, C. Li, Y. Zhang, C. Yu, and S. Schwertfeger, “Osmag:
Hierarchical semantic topometric area graph maps in the osm format for
mobile robotics,” in 2023 IEEE International Conference on Robotics
and Biomimetics (ROBIO). IEEE, 2023, pp. 1–7.

[5] J. Hou, Y. Yuan, and S. Schwertfeger, “Area graph: Generation of
topological maps using the voronoi diagram,” in 2019 19th International
Conference on Advanced Robotics (ICAR). IEEE, 2019, pp. 509–515.

[6] F. Xie and S. Schwertfeger, “Robust lifelong indoor lidar localization
using the area graph,” IEEE Robotics and Automation Letters, vol. 9,
no. 1, pp. 531–538, 2023.

	Introduction
	Approach
	Human Instruction Processing & Passage Cost Evaluation
	Navigation Event Tracking & Path Validation
	osmAG Path Planner
	Integration osmAGPathPlanner with ROS move_base
	Documenting Passages Accessibility

	Experiments
	Experiments Setup
	Robot and World
	Cases
	Metric

	Event Tracking & Path Approval Experiment
	Comprehensive System Experiment
	Ablation Experiment
	Multi-floor Experiment

	References

