
TileTracker: Tracking Based Vector HD Mapping
using Top-Down Road Images

Mohammad Mahdavian
Department of Computing Sciences

Simon Fraser University
Burnaby, Canada
mmahdavi@sfu.ca

Mo Chen
Department of Computing Sciences

Simon Fraser University
Burnaby, Canada
mochen@cs.sfu.ca

Yu Zhang
NVIDIA Corporation

Santa Clara, United States of America
yuzh@nvidia.com

Abstract—In this paper, we propose a tracking-based HD
mapping algorithm for top-down road images, referred to as
tile images. While HD maps traditionally rely on perspective
camera images, our approach shows that tile images can also
be effectively utilized, offering valuable contributions to this
research area as it can be start of a new path in HD mapping
algorithms. We modified the BEVFormer layers to generate BEV
masks from tile images, which are then used by the model to
generate divider and boundary lines. Our model was tested with
both color and intensity images, and we present quantitative and
qualitative results to demonstrate its performance.

Index Terms—HD mapping, top-down images, tracking

I. INTRODUCTION

Autonomous vehicles rely on accurate environmental data
from various sensors, including cameras, lidar, radar, IMUs,
and GPS. These sensors work together, with their data fused
to generate precise commands for vehicle navigation [1].

Some methods estimate waypoints and navigational com-
mands directly from sensor data in an end-to-end manner [2]–
[4]. Large Visual Models (LVMs) derive actions from camera
images [5], while Reinforcement Learning (RL) optimizes
navigation based on reward signals [6].

High Definition (HD) maps serve as a valuable and detailed
resource for navigating autonomous vehicles. To create these
maps for various areas and cities, vehicles equipped with mul-
tiple sensors, such as cameras, lidar, and IMUs, traverse the
roads, capturing necessary data. Human annotators then iden-
tify fixed road features like lane dividers, traffic lights, pedes-
trian crossings, and road boundaries. Following this, deep
learning models have been employed to learn and estimate
these road features for inclusion in the HD map based on the
sensor data [7]–[10]. One well-known method for HD mapping
is MapTR [7], [8], which offers an end-to-end, transformer-
based [11], unified permutation-equivalent modeling approach.
This method models each map element as a point set with
a group of equivalent permutations, enabling accurate shape
descriptions and stabilizing the learning process. However,
MapTR generates road features on a frame-by-frame basis,
which can result in noisy and inconsistent HD maps. To
address these issues, StreamMapNet [9] utilizes long-sequence

This project was completed as part of an internship program at NVIDIA
Corporation

temporal modeling of video data. It employs multi-point atten-
tion and temporal information to produce large-scale local HD
maps with enhanced stability. Additionally, MapTracker [10]
approaches the mapping problem as a tracking task, leveraging
a memory of latents to ensure consistent reconstructions over
time. This method adds a sensor stream into memory buffers
of two latent representations: raster latents in bird’s-eye-view
(BEV) space and vector latents over road elements.

In these types of HD mapping methods, local HD maps are
typically generated from perspective view (PV) images. This
approach can limit model performance due to the need for
PV-to-BEV conversion. In this work, we address this issue by
developing HD maps based on MapTracker using top-down
road images, known as tile images. We utilize NVIDIA’s road
dataset to generate sequences of these top-down tile images.
Additionally, we modify MapTracker to create BEV segmen-
tation directly from the tile images, enabling the algorithm to
generate vectors for local HD maps. These local maps are then
integrated to produce comprehensive global HD maps.

II. METHODOLOGY

In this section, we explain our algorithm. As mentioned
before, our approach is derived from MapTracker [10] and we
have made modifications on this method to be able to generate
local HD maps from top-down tile images.

This method employs a robust memory mechanism to
accumulate sensor data into two distinct memory represen-
tations. The first is a top-down BEV memory of the vehicle’s
surrounding area, and the second is a vector memory for road
elements. At each frame, the algorithm selects a subset of past
latent memories for fusion. The vector memory mechanism
also uses tracking methods to maintain a sequence of memory
latents associated with each road element. In the BEV module,
the BEV memory buffer MBEV (t − 1) generates the initial
BEV features for each frame. Then, a deformable self-attention
mechanism enhances the BEV memory features. In the next
step, for MapTracker, a spatial deformable cross-attention
layer, adapted from BEVFormer [12], converts perspective
view image features I(t) into BEV features MBEV (t).

We have modified the BEVFormer layer to generate BEV
features from top-down tile images by utilizing top-down cam-
era intrinsic and extrinsic matrices. In general, the BEVFormer



Image Encoder

BEV Memory Buffer

BEV Query Propagation

Deformable Self-Attn

Modified BEVFormer
(Top-Down to BEV CA)

BEV Memory Fusion

Vector Memory Buffer

Vector Query Propagation

Vector Instance Self-Attn

BEV to Vector CA

Vector Memory Fusion

VectorsBEV
Mask

Tile Image Features

Tile Image
Y(t)MBEV 

I(t)

(t)

Fig. 1: Main TileTracker model structure. Green and blue
boxes show BEV and vector modules, respectively.

processes six camera image features along with their respective
camera matrices and related information. Deformable atten-
tion [13] is used to integrate the image features into the
corresponding areas of the BEV mask. In our approach, the ex-
trinsic camera matrix is constructed by combining the vehicle’s
translation and rotation matrices, followed by an additional
downward rotation to obtain the final extrinsic matrix. In this
way, the deformable attention mechanism integrates the top-
down tile image features with the entire BEV mask, leading
to efficient generation of the BEV mask.

In the next layer, latent features from previous frames that
are stored in a buffer get fused with the current frame’s features
to create the final BEV mask, MBEV (t). The algorithm uses
a strided selection of four memories, corresponding to various
vehicle positions relative to the current position, for the fusion.

For vector predictions, a transformer-based tracking ap-
proach is used to propagate vector queries, combined with
new learnable element candidates to generate vector features
for new frames. Subsequently, a standard self-attention mech-
anism, along with BEV-to-Vector cross-attention and vector
memory fusion, is employed to estimate vectors, Y (t), con-
taining vector points p for the next frame.

III. TRAINING

The road elements defined in our dataset include divider and
boundary lines. We extract top-down tile images with the size
of (H,W ) that includes intensity and color images as well
as the ground truth (GT) for each line found in the image.
We train two separate model with using intensity and color
images as our model inputs to investigate their performance.
Additionally, we divide all the line types (solid, double solid,
dashed, etc.) into two main categories, divider and boundary
lines. Each road element in the GT is denoted as Ŷ = (V̂ , ĉ)
where V̂ is 20 points interpolated from the raw vector and
ĉ specifies the line type. Also, the lines are rasterized into
a segmentation image using OpenCV and PIL libraries to
generate GT for the BEV mask, Ŝ.

A. Loss Functions

The loss functions used for training our model, focus on the
BEV mask and vector generation. For the BEV masks, we use
per-pixel Focal loss [14] and per-class Dice loss [15] between
the predictions and the GT defined by

Fig. 2: An example of intensity (left) and color (right) images
is shown. These images are generated from 3D colored lidar
point clouds and displayed as 2D top-down BEV images, with
intensity represented in grayscale and color images in their
original colors.

LBEV = λ1Lfocal(S(t), Ŝ(t)) + λ2Ldice(S(t), Ŝ(t)) (1)

For the vector generation, we use a tracking style loss which
consists of a focal loss, Lfocal, and a permutation-invariant line
coordinate loss, Lline. Their combination defines Ltrack as

Ltrack = λ3Lfocal(p, ĉ) + λ4Lline(V (t), V̂ (t)) (2)

We also borrow the transformation loss, Ltrans, from
StreamMapNet to enforce the query transformation to maintain
the vector shape and line type. Therefore the complete loss
function would become

L = LBEV + Ltrack + λ5Ltrans (3)

B. Model Training Details

The training has three main stages. 1) Pre-training the
image backbone and BEV encoder to generate BEV masks, 2)
Warming up the vector decoders while keeping the remaining
model components frozen, 3) Training the complete model
structure.

The loss weights are set as follow: λ1 = 10.0, λ2 = 1.0,
λ2 = 5.0, λ2 = 50.0 and λ5 = 0.1. We use AdamW as our
optimizer and initial learning rate of 5e-4 which is decreased
to 1.5e-6 using a cosine learning rate scheduler.

IV. EXPERIMENTS

We train our model using 8 NVIDIA V100 GPUs and the
three stages need 12, 4 and 24 epochs, respectively. Also the
batch size of 4 is considered for all training stages. In this
section, we explain our dataset generation and preprocessing.

A. Dataset

We use data collected from various roads and tracks to train
our model. This dataset includes top-down tile intensity and
color images covering a 30×60 meters area, GT for different
divider line types and boundary lines within the images, and
the car’s GPS location. In the data generation process, a 3D
colored LiDAR system was employed to capture track data.
The resulting color and intensity images provide 2D top-down
views, displaying colored and grayscale representations of the
captured points. A sample of them is provided in Fig. 2.

It is crucial to preprocess the dataset to ensure it is suitable
for model training. The input data must be continuous with



TABLE I: Our model’s (TileTracker) performance compared
with our baseline (StreamTileNet) over different inputs (in-
tensity and color images) and output categories (divider and
boundary lines). The AP is measured for different thresholds
and their average.

Input Category Model AP Ave
@0.5m @1.0m @1.5m AP

Intensity Divider TileTracker 11.64 19.60 26.12 19.12
StreamTileNet 11.95 18.37 23.73 18.01

Boundary TileTracker 2.84 8.74 15.68 9.09
StreamTileNet 1.65 6.62 13.09 7.12

Color Divider TileTracker 8.61 15.71 21.76 15.36
StreamTileNet 7.57 14.03 20.29 13.96

Boundary TileTracker 2.84 8.74 15.68 9.09
StreamTileNet 1.79 6.00 11.90 6.56

reasonable frame differences, as our tracking algorithm relies
on finding similarities between consecutive frames. Conse-
quently, the tracks are generated so that two consecutive
frames have a minimum distance of 1 meter, though this is not
always guaranteed. In some instances, the distance between
frames may exceed 5 meters, in which case we split them
into separate tracks. We only consider tracks with at least 20
frames and limit each track to a maximum of 500 frames.
This preprocessing results in a total of 48K samples, with 40K
samples allocated for training and 8K samples for testing.

B. Baseline

As our baseline, we train the popular temporal method,
StreamMapNet, after applying the same modifications used in
BEVFormer to enable training with tile images. This modified
version of the model is referred to as StreamTileNet.

C. Quantitative Results

We present quantitative results for our method and the
baseline. Table I shows the Average Precision (AP) across
thresholds (0.5, 1, and 1.5 meters) for different input types
(intensity and color images) and output categories (divider
and boundary lines). TileTracker consistently outperforms
StreamTileNet, demonstrating superior tracking. Intensity im-
ages yield better accuracy for divider lines, while differences
for boundary lines are minimal, suggesting intensity images
are more effective due to higher contrast. Despite using a larger
dataset than nuScenes [16] (40K compared to 28K), our results
indicate that additional data and training could further improve
performance due to complicated nature of our data.

D. Qualitative Results

Qualitative results are presented in two formats: unmerged
and merged. In the unmerged format, the model outputs are
depicted as 20 individual vector points, plotted sequentially
according to the vehicle’s pose. In the merged format, the
points are connected based on overlapping vectors, resulting
in continuous lines. As shown in Fig. 3 to Fig. 6, the model
generally performs well. However, its performance seems
better on straights and curved paths compared to sharp turns.
This discrepancy is likely due to the predominance of straight
and slight curved paths in our dataset. By incorporating more

complex turns and curves, we can further improve the model’s
performance across a wider range of path types.

V. CONCLUSION

In this paper, we developed a tracking-based HD mapping
algorithm for top-down tile images. Building on MapTracker,
we modified the BEVFormer layer to generate BEV masks
from the tile images. The model was tested using both inten-
sity and color images, with intensity images yielding better
results due to the higher contrast between the lines and the
background. While the model demonstrated reasonable per-
formance, incorporating more complex paths into the dataset
could further improve its effectiveness, which we leave as
future work.

REFERENCES

[1] D. J. Yeong, G. Velasco-Hernandez, J. Barry, and J. Walsh, “Sensor and
sensor fusion technology in autonomous vehicles: A review,” Sensors,
vol. 21, no. 6, p. 2140, 2021.

[2] P. Agand, M. Mahdavian, M. Savva, and M. Chen, “Letfuser: Light-
weight end-to-end transformer-based sensor fusion for autonomous driv-
ing with multi-task learning,” arXiv preprint arXiv:2310.13135, 2023.

[3] K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz, and A. Geiger, “Trans-
fuser: Imitation with transformer-based sensor fusion for autonomous
driving,” Pattern Analysis and Machine Intelligence (PAMI), 2022.

[4] H. Shao, L. Wang, R. Chen, H. Li, and Y. Liu, “Safety-enhanced
autonomous driving using interpretable sensor fusion transformer,” in
Conference on Robot Learning. PMLR, 2023, pp. 726–737.

[5] L. Chen, O. Sinavski, J. Hünermann, A. Karnsund, A. J. Willmott,
D. Birch, D. Maund, and J. Shotton, “Driving with llms: Fusing object-
level vector modality for explainable autonomous driving,” in 2024 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2024, pp. 14 093–14 100.

[6] R. Gutiérrez-Moreno, R. Barea, E. López-Guillén, J. Araluce, and
L. M. Bergasa, “Reinforcement learning-based autonomous driving at
intersections in carla simulator,” Sensors, vol. 22, no. 21, p. 8373, 2022.

[7] B. Liao, S. Chen, X. Wang, T. Cheng, Q. Zhang, W. Liu, and C. Huang,
“Maptr: Structured modeling and learning for online vectorized hd map
construction,” arXiv preprint arXiv:2208.14437, 2022.

[8] B. Liao, S. Chen, Y. Zhang, B. Jiang, Q. Zhang, W. Liu, C. Huang, and
X. Wang, “Maptrv2: An end-to-end framework for online vectorized hd
map construction,” arXiv preprint arXiv:2308.05736, 2023.

[9] T. Yuan, Y. Liu, Y. Wang, Y. Wang, and H. Zhao, “Streammapnet:
Streaming mapping network for vectorized online hd map construction,”
in Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 2024, pp. 7356–7365.

[10] J. Chen, Y. Wu, J. Tan, H. Ma, and Y. Furukawa, “Maptracker: Tracking
with strided memory fusion for consistent vector hd mapping,” arXiv
preprint arXiv:2403.15951, 2024.

[11] A. Vaswani, “Attention is all you need,” Advances in Neural Information
Processing Systems, 2017.

[12] Z. Li, W. Wang, H. Li, E. Xie, C. Sima, T. Lu, Y. Qiao, and J. Dai,
“Bevformer: Learning bird’s-eye-view representation from multi-camera
images via spatiotemporal transformers,” in European conference on
computer vision. Springer, 2022, pp. 1–18.

[13] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable detr:
Deformable transformers for end-to-end object detection,” arXiv preprint
arXiv:2010.04159, 2020.

[14] T. Lin, “Focal loss for dense object detection,” arXiv preprint
arXiv:1708.02002, 2017.

[15] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional
neural networks for volumetric medical image segmentation,” in 2016
fourth international conference on 3D vision (3DV). Ieee, 2016, pp.
565–571.

[16] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 11 621–11 631.



Fig. 3: Unmerged and merged predictions (top left and right) as well as Unmerged and merged GTs (bottom left and right)
for a curved path

Fig. 4: Unmerged and merged predictions (top left and right) as well as Unmerged and merged GTs (bottom left and right)
for a path containing straight paths and turns

Fig. 5: Unmerged and merged predictions (top left and right) as well as Unmerged and merged GTs (bottom left and right)
for a curved path

Fig. 6: Unmerged and merged predictions (two top figures) as well as Unmerged and merged GTs (two bottom figures) for a
straight path


	Introduction
	Methodology
	Training
	Loss Functions
	Model Training Details

	Experiments
	Dataset
	Baseline
	Quantitative Results
	Qualitative Results

	Conclusion
	References

