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I. INTRODUCTION
A critical task in many robotic applications is acquiring

and consistently updating an accurate and detailed model of
the environment to plan and execute diverse actions in it. This
is especially true in interactive scenes, where objects can be
moved by the robot or humans. To efficiently maintain a
map representation of such environments, one solution is to
apply Next Best Viewpoint planning (NBV) [11] to reduce
the uncertainty about the environment while minimizing the
required number of observations to update the map. However,
in confined and cluttered scenes, e.g. shelves, observing all
objects in the scene is not always possible due to occlusions,
leading to an incomplete representation and, consequently,
difficulties in searching and retrieving desired objects.

We propose a modular and extensible policy inspired by
Partially Observable Markov Decision Processes (POMDP)
that leverages learned environment dynamics in map space
and uncertainty-aware map completion to efficiently explore
environments with movable objects. Our approach computes
the action sequence that, in expectation, maximizes the
agent’s information gain over a finite horizon, as depicted in
Figure 1. As the central objective in manipulation-enhanced
mapping is to minimize map entropy, model overconfidence
in either dynamics prediction or map completion prediction
would result in incomplete exploration with improper early
termination. Therefore, we achieve confidence-calibrated
map and push prediction by employing evidential deep
learning [8] in our map completion and push prediction
models. We experimentally show that our pipeline overcomes
prior work [4] and strong baselines in terms of final map
metric-semantic accuracy and confidence calibration.

II. METHODS
A. Problem Definition

In this work, we consider a confined environment with
movable objects of varying sizes and orientations. However,
some objects may be unobservable from any viewpoint due to
occlusions by others. A robotic arm, equipped with a wrist-
mounted RGB-D camera and a gripper, aims to build an
accurate map of the current workspace configuration CW [1]
after a sequence of actions, which can be either taking an
RGB-D image or performing a manipulation (e.g., a push)
to change object configurations and reveal occluded areas.
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Fig. 1: Given a partial map of the environment, the robot has to
decide whether an observation or a manipulation action at the
current state best reduces the map uncertainty in the long run.

Let Φt represent the robot’s internal environment map
at time t. When manipulating the environment, it causes
a transition on the workspace configuration space from
ctw 7→ ct+1

w ∈ CW according to the environment’s dynamics.
Further, whenever the robot chooses to take another RGB-D
observation, it updates its internal environment representation
according to its belief update, Φt → Φt+1.

The problem, considered in this work, is to determine the
most informative sequence of actions for a robot, within a
given action budget, that minimizes the difference between
the robot’s internal map belief and the true environment
configuration, using a similarity metric, like IoU.

B. Overview
We model this problem as a Partially Observable Markov

Decision Process (POMDP) with the parameters S, A, T,
R, Z, O. The state S consists of the fully observable robot
configuration and the partially observable workspace config-
uration, detected through RGB-D and semantic observations.
The transition function T : Cw 7→ Cw is initially unknown,
and the workspace is represented by a dense voxel map with
height H , width W , depth D, and M classes, defining the
state as q ∈ Rdof ∪ s ∈ NHxWxD.

The action space A includes two types of actions: ob-
servation actions, which change only the robot’s state and
produce partial observations o ∈ O via the observation func-
tion Z, and interactive actions, which alter the workspace
configuration without generating new observations beyond
proprioception. The reward function R is the negative mean
voxel-wise cross-entropy between Φt (the robot’s internal
map) and ctw (the true configuration).

To solve the POMDP, the agent must update its belief
about the map state after both manipulation and observation
actions. However, due to the high dimensionality of the map,
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Fig. 2: Overview of our framework for viewpoint manipulation planning. From a prior map belief, our pipeline predicts the posterior
and selects which action, i.e., observation or manipulation, is best to perform and brings the highest information gain in the long run.

traditional belief updates for POMDPs are impractical. A
common approximation assumes map cells are independent,
as in occupancy grid mapping [9], but this leads to incorrect
environment representations. For example, two maps with the
same number of occupied cells—one with salt-and-pepper
noise and another with clustered voxels—are equally likely
under a naive uniform prior, though the former is unrealistic
since objects in the real world tend to be contiguous.

To address this, we propose using uncertainty-calibrated
deep learning models to predict a factorized belief distribu-
tion. This approach better aligns the robot’s factorized belief
to more plausible map distribution than naive independent
updates. For this we use network architectures similar to
those described by Georgakis et al. [5], with the exception
that the output heads are set to be posterior networks. Their
losses, data augmentation and collection are described in
more depth in the following sections.

C. Ideal Factorized Belief Update

We consider an RGB-D image with added semantics as
observation at time t, ot ∈ O, taken from a camera fixed
to the robot’s end-effector. We assume, that the robot can
sample images from a finite set of viewpoints vk ∈ V . Fol-
lowing occupancy grid mapping literature [9], we represent
our belief over the environment state sτ as a dense HxWxD
voxel grid of independent cells, mi,j ∈ M, each tracking
their own occupancy probability and a HxWxM 2D semantic
map of independent cells si,j .

We propose to retain the independent cell representation,
but alter the cell probability updates to better align the
implicit belief with a properly calculated one. We presume
there exists a function Ω(Φt, sτ ) = P (sτ |Φt) that outputs an
accurate estimate of the probability of any state sτ given the
current independently factorized map representation at time
t, with Φt and z(ot, s

τ ) as our chosen observation model.
The POMDP belief update equations [6] are:

P t(sτ ) =
1

η
z(ot, s

τ )
∑
s′∈S

T (sτ , a, s′)Ω(Φt−1, s′), (1)

where s′ is any other possible state and P t(sτ ) indicates
the probability of state sτ at time t, with η a normaliz-
ing constant. From those new probabilities, we derive the

marginalized occupancy probability of any given element in
the map. The same may be done for semantic mapping using
a naive average update of the semantics as in [7].

D. Making the belief updates tractable

According to our problem definition, observation actions
will never cause a transition on the non-observable part of
the state. We propose estimating this update using a deep
posterior network [10], υo(mt−1, ot), where ot denotes the
observation at time t, leveraging the neural network’s aver-
aging tendency to create an implicit Monte Carlo estimate
of the map cell update.

1) Dataset Generation: To train this model, we col-
lect the following dataset: each data point consists of
(mgt, o1, o2, · · · , on), where mgt is the ground truth 3D
metric-semantic voxel map of a given environment with
randomly placed objects and o1, · · · , on as the depth and
semantic images seen from a set of n discrete pre-selected
viewpoints in the environment.

2) Model Training: We train the model as follows: Every
epoch, for every data point, we sample a sequence of l posed
depth and semantic images, o′0, o

′
1, · · · , o′l, without replace-

ment. Let m̃ot = υoo(m̃t−1, o
′
t) be a Beta distribution for

occupancy and m̃st = υos(m̃t−1, o
′
t) a Dirichlet distribution

for each semantic voxel. Let αi be the α parameters and pi
be the mean of the Dirichlet (or Beta) distribution for a single
map element i at time t and let Si =

∑
αi be its concentra-

tion parameter. Finally, let α̃i = yi + (1− yi)⊙ αi, where
⊙ is the element-wise multiplication and yi its ground truth
class. We use the evidential uncertainty-aware cross-entropy
loss from Sensoy et al. [8] to train the network.

The total loss for training the metric-semantic belief up-
date network is then the sum of the semantic and occupancy
losses Lo

i + Ls
i summed over l observations.

E. Handling the belief update after manipulation actions

Similarly, by assumption, the manipulation action itself
does not generate any new observations. We thus learn this
update through an action specific network, υa, with action
specific parametrization.
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1) Dataset Generation: We collect a dataset where each
sample has the form (mpre

gt ,mpost
gt , o1, o2, · · · , on, ζ), where

mpost
gt are the ground truth maps pre and post manipulation,

ζ is the action-dependent parametrization of the executed
manipulation sampled according to Sec II-F and o1, · · · , on
are the images collected pre manipulation.

2) Action Belief Update Training: Every batch, we sample
a sequence of l ∈ [1, 10] images without replacement,
and recursively obtain the beliefs from the map observa-
tion belief propagation network , υo, at every time step t:
m̃t = υo(m̃t−1, ot) and obtain the output via υa(m̃l, ζ). υa
has 3 outputs: The occupancy and semantic posteriors for
the map after the push (like υo) and a beta distribution for
the estimated map occupancy map difference, used as an
auxiliary task for the network, whose ground truth, mchange

gt

is derived from the difference between mpre
gt and mpost

gt . As
before, the network heads are trained using the uncertainty-
aware cross-entropy loss [8]. The final loss is the sum of
the occupancy, semantic and differences loss for the three
outputs of υa(m̃l, ζi). Onwards, We refer to the factorized
occupancy and semantic belief representations (maps) at time
t by Φt = (Φt

O,Φ
t
S),respectively

F. Push Sampling

Our manipulation action of choice is pushing. To compute
valid push candidates using Φt

O, we first compute the frontier
points from the shelf entry and sample k of them uniformly
at random as start points for the pushes. We test the start
points of the k sampled pushes for collisions against high
confidence voxels in Φt

O. For each valid start point, we
sample a likely occupied point in Φt

O near it to obtain
the push direction and sample a push distance uniformly at
random between 50 and 150 mm. We then obtain a valid
motion plan for the entire trajectory using a sampling based
motion planner and use it to calculate an approximation of
the robot’s swept volume within the voxel map of interest
and start and end points, which are the action parametrization
inputs used in the υa.

G. Solving the POMDP

Volumetric Information Gain (VIG) [3] can be used with
submodular optimization in static scenes to efficiently solve
Next-Best-View planning and sensor placement. Therefore, a
greedy policy for solving this problem would lead to bounded
suboptimality. While VIG’s submodularity does not hold in
general for a dynamic scene representation, we assume that
manipulation actions are sufficiently rare in occurrence, that
the submodularity assumption is still valid for the dominant
part of the policy. As such, we propose a 2-step greedy search
policy to solve this POMDP. Let vi ∈ V be the possible
views on the camera array V . Furthermore, let Θt

k ⊆ Θ be a
set of K sampled pushes from the sampling method at time
t explained in Sec. II-F.

In our two-step greedy search, we only need to consider
two possible kinds of action sequences: first, taking two
observations and second, performing a manipulation action
followed by an observation, namely (vt, vt+1) or (θt, vt+1).

Let Γ be a volumetric Occlusion-aware Information
Gain [3] calculation module. Let IG(vi, · · · , vk|Φo) =
Γ(vi, · · · , vk, |Φt

o) denote the OIG of the non-redundant rays
from views vi, · · · , vk on the voxel grid Φo at time t. We
can define the two most informative consecutive pushes
(v∗t , v

∗
t+1) at time t as:

(v∗t , v
∗
t+1) = argmax

vt,vt+1∈V
IG(vt, vt+1|Φt

o) (2)

Let Φ̃t+1
θt

= υa(Φ
t, θt) denote the predicted belief from

the push prediction network when given action θt ∈ Θt
k as

input. We can define the most informative 1-step push, θ∗t
and its associated most informative view v∗θt ,as:

θ∗t , v
∗
θt = argmax

θt∈Θt
k

max
vt+1∈V

IG(vt+1|Φ̃t+1
θt

) (3)

Our agent then decides the action at to take according to:

at =

{
v∗t if γIG(v∗t , v

∗
t+1|Φt

o) > IG(v∗θt |Φ̃
t+1
θ∗
t
)

θ∗t otherwise
(4)

Where γ is a discount factor, that is set to 1.1 in this
work, to account for the extra cost of manipulating the
environment. If at = θ∗t , then Φt+1 = Φ̃t+1

θ∗
t

. If at is an
observation action, we get the observation at time t, ot, and
use the map completion module to obtain the new belief
Φt+1 = υo(Φ

t, ot). We then repeat this until the maximum
number of actions has been performed, or a threshold for
full map completion has been reached, which is set to 95%.

III. EXPERIMENTS
We perform two experiments to highlight our method’s

improvements in map completeness, accuracy and confidence
calibration over a random agent, a series of ablations and the
method proposed by Dengler et al. [4]. We also perform an
experiment to examine the influence of evidential vs non-
evidential map completion on simulated data.
A. Experimental Setup

For the experimental evaluation, we set up a shelf scene
with a UR5 arm for observation and action execution in
PyBullet [2]. The robot is equipped with a Robotiq parallel-
jaw gripper and an RGB-D camera for observations.

To sample realistic object configurations, a total of 14
different object categories from the YCB dataset are used
and sampled in a shelf board of size (0.8 × 0.4 × 0.4)m.
We sample object configurations on the shelf following a
stochastic method that considers class dependencies and
efficient free space coverage for placing. This method allows
for the sampling of varied object configurations, numbers and
classes, including fully random scenes and structured scenes,
such as those found in grocery store shelves. In addition,
we implement a simple voxel-based GPU occupancy grid
mapper for collecting ground truth data.

B. Baselines & Metrics

We re-implemented the approach by Dengler et al. [4] (RL
VPP) using their provided weights, as their setup matched
ours. Additionally, we created a Random baseline, which
samples views randomly and uses standard metric-semantic
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Fig. 3: Calibration and Accuracy results for different agents in both random and handcrafted challenging scenarios for exploration. Our
results show that our map completion model is quite accurate and well-calibrated.

Model (budget) Occ. IoU↑ Sem. mIoU↑ Occ. ECE ↓ Sem. mECE↓
Non-Evidential (5) 0.8570 0.6104 0.0370 0.3411
Evidential (5) 0.8750 0.6968 0.0109 0.2470
Non-Evidential (10) 0.8927 0.6899 0.0257 0.2683
Evidential (10) 0.8859 0.7423 0.0074 0.2062

TABLE I: Comparison of OBM performances of the Information
Gain + Map completion agent using both evidential and non-
evidential completion models.

occupancy mapping [9]. For ablation, we combined the
Random agent with our map completion network (RMC) to
show the advantage of our view selection method. Finally,
we evaluate our pipeline with manipulation (using Map
Space Dynamics Models, MSDM) and without (MSM) to
demonstrate that our agent reveals more of a scene by
effectively using pushing.

We compare their confidence calibration using expected
calibration error (mECE) and their segmentation perfor-
mance with mIoU with the ground truth.
C. View point Manipulation Mapping Comparisons

We evaluated our method on 100 randomly sampled scenes
and 26 handcrafted scenes that require pushing to fully reveal
their contents. All agents start with a naive prior and aim
to explore the environment with limited action budgets of
5 (short) and 10 (long) steps. For stochastic methods like
Random and RMC, we repeated each scenario four times,
reporting the mean and standard deviation.

Fig. 3 shows that our method outperforms all baselines in
both map accuracy and calibration across both complexity
levels and budgets. While all methods improve with more
steps, our method achieves over 90% IoU after just five
steps, with minimal gains from additional actions. The higher
IoU compared to MSM highlights the benefit of manipu-
lation actions (pushes) in increasing map knowledge while
maintaining low ECE. The RMC ablation using our map
completion network shows significant accuracy improvement
over the Random baseline but is still outperformed by our
full pipeline with viewpoint selection.

D. Influence Of Evidential Networks on Task Performance

To evaluate whether evidential training improves perfor-
mance in the given task, we train a map completion model
with a near-identical architecture to our map prediction
model, but using traditional cross-entropy loss instead of
evidential learning. Both models were tested on our MSM
pipeline, and their results are shown in Table I.

As expected, the agent using the evidential map com-
pletion model achieved significantly higher occupancy and

semantic IoUs with a smaller budget and maintained an
advantage in the more challenging semantic task with a larger
budget. Additionally, its predictions were better calibrated in
both semantics and occupancy across all budgets. This indi-
cates that evidential deep learning provides better-calibrated
and more informative map completions for OBM agents and
potentially other deep-learning-based active perception tasks.

IV. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a POMDP-inspired policy

solver, that decides between different action types to generate
an uncertainty-aware map-apace dynamics model as belief.
In contrast to prior work [4], our pipeline does not switch
between modular action types, e.g., observing and manipu-
lating, according to a simplistic heuristic, but considers all
action types to be equally effective and decides according to
the best informative outcome. Our results show the improved
performance of our system in comparison to baselines and
ablations in terms of occupancy and semantics map accuracy
and demonstrate that our agent is able to reason about map
dynamics and impact of actions to the scene.
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